
International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 1146
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

PERFORMANCE OPTIMIZATION OF INTRA
DOMAIN ROUTING PROTOCOLS USING

QUAGGA
Ashish Kuamr Mishra, P. Selvaraj

Abstract—Optimization and high performance of routing protocols are needed in this interconnected world. As the intra-domain routing protocols
(OSPF) is widely used in ip network. In ospf implementations the processing delays impact the time needed to re-convergence after a topology change
for both intra-domain and inter-domain routing. The performance index used to characterize the re-convergence capability is also referring as switching
time. To measure the switching time on pc based router and open source routing software we built a test-bed. Moreover we describe a set of changes
made on Quagga code in order to optimize some processes, whose algorithms were not efficient. After obtained result we show that, if the routing
software is optimized, the pc-based routers perform better than commercial router in terms of switching time. The realized implementation allows the
shortest path computation time to be reduced of about the 97%.

Index Terms— network, Ospf, Pc-based router, quagga, switching time.

—————————— ——————————

1. INTRODUCTION
HE diffusion of open software implementing
routing protocols, together with the big
computing power of normal PCs, have been

raising a big interest towards the possibility of developing a
complete routing system based on open source software
and standard low-cost hardware [1]. Software routers are
achieving a great interest in the last years because they
represent an even more realistic alternative to commercial
routers. In my work I have always used Linux operating
system because it is becoming an interesting competitor for
Windows, with a number of users constantly growing.
Software implementations of routers based on standard PC
hardware have been recently made available in the "open
software" and "free software" world. Quagga and Xorp
represent the most common open-source routing software
and in my work I have studied and tested quagga.
The interest in the Software Router employment has an
economic motivation and a research motivation. In fact PCs
hardware is available at low cost, their architectures are
well documented and their performance evolution is
guaranteed. Another important aspect of Software Routers
is that software is free and documented while in the case of
commercial devices software is not available. Of course it is
important to evaluate Software Router performance; in this
way such a device has to be conformed with protocols it
implements, it has to communicate with different Software
Routers and with commercial devices, and it should have
performance at least comparable with ones of a commercial
device. So the performance evaluation of Software Routers
represents the first activity of my work.
To examine the performance of a router running the OSPF
protocol [2] we built up a set of tests. A Black Box

measurement [4] of switching time [5, 6] is conducted in a
PC running Linux and Open Source [18] routing software.
Switching time is defined as the time needed by a router to
re-converge its routing tables and redirect data traffic to the
best route. Switching time depends on the Shortest Path
First (SPF) computation time, that is, the time needed to
execute Dijskstra’s algorithm when a topology change is
received by the router. Our measurement results compare
switching time in a PC router and in a Cisco commercial
router [9].

From our evaluation of switching time we uncover
inefficiency in the implementation of Dijsktra’s algorithm in
Quagga [17] routing software. Our analysis of the code
found that the data structures used to implement the
Candidate List [7] during the SPF calculation were
suboptimal. We modified the code to use a binary heap
data structure [8] and have evaluated the switching time of
the new version of Quagga.

The organization of the paper is as follows. The test-bed
for the SPF time evaluation is illustrated in Section II. The
OSPF performance of Quagga is shown and compared to
the one of the Cisco router in Section III. The optimization
of Quagga is described in Section IV. Our main conclusions
are discussed in Section V.

a. Ospf Performance Indexes
The performance characterization of an OSPF router is

based on the detection of its main functions and on the
definition of procedures to measure them using OSPF
control packets. This work has been completed by
Benchmarking Methodology Working Group (BMWG) of
IETF which has defined OSPF performance indexes and
methodologies for tests execution, described in [10,11]. The

T IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 1147
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

three performance indexes defined by BMWG, each one
related to a specific function, are reported, with a brief
description, in the following list:

• LSA processing time.
When an OSPF router receives an LSA it has to control

integrity, age, if LSA is a new one or a duplicated one
(already present in its LSA Database), eventually it has to
insert the new LSA in its Database and sends an
Acknowledge LSA. Of course LSA processing time is
influenced by LSA type (new or duplicate), LSA links
number and Database extension.

• LSA flooding time.
When an OSPF router receives a new LSA it has to

perform flooding and so it has to transmit the new LSA
through all its interfaces, except the one it has received the
LSA from. Also in this case LSA type, links number and
Database extension influence this performance index.

• Shortest Path First (SPF) computation time.
The execution of Dijkstra algorithm to compute all

shortest paths is the most onerous operation for an OSPF
router. The time needed to perform this function depends
on network topology complexity and so, as will be better
described in next Section, on LSA Database extension.
Besides these three performance indexes proposed by
BMWG I have also defined a further one, which considers
the interaction between control plane (OSPF) and data
plane:

• Switching time.
It represents the time for an OSPF router to update its

routing table after a topological event and so to switch
traffic from an old path to a new one. In following Sections
I will analyze in depth the last two indexes because they
give a full characterization of impact of OSPF router
functions on network performance and because results
obtained represent the starting point for Software Router
modification. In fact, as a consequence of SPF computation
time results, I’ll show how Software Routers need to be
optimized to be compared with commercial ones.

2. TEST-BED FOR THE EVALUATION OF THE
SWITCHING TIME

In this section I’ll first describe test methodology to
measure SPF computation time and then I’ll analyze results
obtained on Quagga, and Cisco routers. The aim of this test
is to determine how mch time it takes for a Device Under
Test (DUT) to finish the SPF Computation. The test
configuration used is illustrated in Fig. 1. When a best route
to a destination is found it determines switching time, that
is the time for an OSPF router to re-converge the routing
table and redirect data traffic.

Fig.1. Test-bed for SPF computation. To send data packets PC-A, using
RUDE traffic generator. PC-B emulates a network topology and
decides which path will be followed by the data packets.
PC-A function is to generate data traffic that DUT will
switch using the best path. RUDE traffic [15] is used to
generate data traffic. PC-B emulates the topology reported
in Fig. 2.This topology is composed of a variable number of
simulated routers and networks. The DUT has to find the
shortest paths to every network and router. The software
BRITE [12, 16] is used to generate the emulated network
topology. PC-B uses the LSA generator software SPOOF
[14] to send to the DUT appropriate LSAs describing the
emulated network topology.

Fig. 2 A network topology is emulated in PC-B by sending
appropriated LSAs to the DUT.

The measure methodology for the SPF computation [10] has
defined by the IETF. So, when an Update LSA arrives, with
a fixed delay the SPF computation start time is scheduled, a
timer is set and after the timer expires the SPF calculation
starts. OSPF routers use to schedule the instant (timer) in
which the SPF computation starts to avoid to perform the
calculation too many times when receiving Update LSAs
[2]. Moreover, another timer enforces a lag between two
consecutive SPF computations. In particular the following
two timers are defined in [2]:
• spf_delay: time between receiving an Update LSA and
starting the SPF computation;
• spf_hold_time: time between two consecutive SPF
computations.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 1148
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The test can be performed varying the position of the
destination network. In particular we consider the case of
highest switching time and this happens when destination
network is the last inserted in DUT Routing Table. In this
case the components of the switching time, reported in Fig.
3, are:
- RTT, the Round Trip Time between the PC-B and the
DUT;
- Tproc_LSA, the update LSA processing time;
- TSPF , the Shortest Path First computation time, the time
needed to perform Dijkstra algorithm finding shortest
paths from the DUT to all destinations;
- Tupd_RT, the time needed to update the routing table of
the DUT

Fig.3. Components of the switching time Tsw.

The switching time can be calculated as the time difference
between the sending of the update LSA and the receiving of
the first UDP packet on the new path including networks
N2 and N 4 and router B2:
Tsw=tUDP -tu _ LSA (1.1)
and can be expressed as follows:
Tsw=RTT +Tproc _ LSA +TSPF +Tupd _ RT (1.2)
Let us analyze how each component influences the
switching time. RTT can be ignored because PC-B and DUT
are connected through a Fast Ethernet directed link so its
value is smaller than 1 µs. Tproc_LSA and TSPF can be
measured according to the test methodologies described in
[13]. From results reported in [10, 11] it is possible to verify
that Tproc_LSA is much smaller than both TSPF and
Tupd_RT. In conclusion switching time mainly depends on
two operation: SPF computation time TSPF and routing
table updating time Tupd_RT.

3. OSPF PERFORMANCE ON QUAGGA
All performed tests are based on fully meshed network
topologies, with each router connected to each other
through a different transit network. Fig. 3 shows an
example of fully meshed topology. The obtained results are
compared to the ones taken on the Cisco.
The input parameters based on we are doing experiment:

i) Fp, the constant rate at which the packets are
transmitted by PC-A;

ii) Lp, the length of the packets sent from PC -A;
iii) N and M, the number of vertexes and edges of

the directed graph representing the emulated
network topology respectively.

It is important to remark that in representing the emulated
network as a directed weighted graph [3], each router and
each transit network becomes a vertex of the graph, and
each network-router link becomes an edge. Each edge is
labeled with a cost representing the interface cost of the link
connecting a router to a network [3]. One of the
components of switching time is the SPF computation time
whose evaluation depends on both N (vertex) and M
(edge). In particular, the SPF computation starts when the
DUT receives the update LSA.
If we consider an emulated network topology composed by
R routers, we have that:
N=R(R-1)/2 + R (2.1)
M =2R(R -1) +2 (2.2)
In Fig. 4 we have Experimental values taken on a PC based
router and on a Cisco router. We report switching time as a
function of N for packet length Lp=100 bytes and rate
Fp=500 pps. By a more accurate analysis we argued that the
high switching time in Quagga is due to the high time
needed to update the routing table once the Dijkstra’s
algorithm has been executed and the best paths have been
evaluated. This can be revealed by Fig. 5 where we report
the SPF computation time as a function of N for Cisco,
Quagga.

Fig.4. Switching time as a function of the number of vertexes (N) in the

emulated network topology

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 1149
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Fig.5. SPF computation time as a function of the number of vertexes
(N) in the emulated network topology (Fp=500 pps and Lp=100 bytes)

Comparing the two curves, we conclude that Quagga
performs better than the Cisco only when the number of
routers R in the emulated topology is smaller than 45
corresponding to 1035 vertexes. For large network cisco is
better. In fact it is possible to notice from Fig. 5 that the
experimental measurements obtained for the Cisco router
closely fit the curves 0.005×NlogN. This result is expected
from the complexity of Dijkstra’s algorithm [7,8]. On the
basis of these considerations we have optimized Dijkstra’s
algorithm to obtain performances comparable to
commercial routers. Section IV therefore will be dedicated
to the analysis of the Dijkstra’s algorithm complexity and to
its optimization in Quagga.

4. OPTIMIZE SPF COMPUTATION TIME IN QUAGGA
The SPF computation is based on the Dijkstra’s algorithm
[2]: the algorithm examines the directed weighted graph, in
order to find the shortest paths from a root vertex to each
vertex in the graph. In Quagga, the directed graph is
represented by the LSA set, stored in the LSA database. The
Dijkstra’s algorithm finishes when all of the vertexes have
been inserted in the Spanning Tree and that occurs when
the Candidate List becomes empty. During this procedure
the Candidate List is the most stressed structure, and its
implementation is critical for the resulting global
performances. The Candidate List performs four different
functions:
Extract-Min: This extracts the node with the minimum key
from the Candidate List;
Insert: This inserts a node into the Candidate List.

Decrease-Key: This updates the total cost associated with a
particular node;
Lookup: which find a node whether it is stored in the
Candidate List;
In Quagga, the Candidate List is implemented with a
linked list, whose elements are stored in key increasing
order. In this case the Dijkstra’s algorithm complexity is
O(N2+NM). If we want to obtain an O((N+M) log N) total
cost, we need to reduce the cost of the Insert, Decrease-Key
and Lookup functions down to O(log N). This result can be
achieved only changing the data structure adopted to
implement the Candidate List. In Section 4.1, a binary heap
data structure Implementing the Candidate List will be
proposed and its complexity will be evaluated. One
difficulty with this proposal is that binary heaps do not
provide efficient Lookup function. In Section 4.2 we will
illustrate how this operation can be eliminated by
modifying the LSA database data structure. In Section 4.3,
the modified Quagga routing software will be evaluated.

a. A binary heap data structure to implement the
Candidate List

In particular in the new Quagga version we have chosen a
binary heap to implement the Candidate List. A binary
heap is a complete and balanced binary tree with a local
sorting [7, 8]. Leaves are always inserted starting from the
left. Thus the heap depth is always less than logN, where N
is the number of nodes. Each node of the heap has a key,
and the whole heap is locally ordered on these keys, so that
each node has a key lower than the ones of its two children.
This particular sorting ensures that the node with the
minimum key is the root of the heap. The management of
the tree is based on two internal functions: the sift-up and
the sift -down functions. The sift-up function illustrated in
Fig.6 . The sift -down function illustrated in Fig.7. These
two functions perform the three main functions supported
by the heap structure: Insert, Extract-Min and Decrease-
Key.

Fig.6. An example illustrating Insert function for a node with key 4.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 1150
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Fig.7. An example illustrating Extract-Min function for the node with lowest key 3.

The Decrease-Key function changes the key of a particular
node to a lower value. Once the key value has been
decreased, it executes the sift-up procedure on the node,
and takes it to its new position. An example is shown in
Fig. 10 where the key of a node is decreased from 18 to 5.

Notice that to implement the Decrease-Key function, a
Number of sift-up operations at most equal to the
maximum depth of the heap is required. For this reason the
Deacrese-Key function cost is O(logN).

Fig.9 . An example illustrating Decrease-Key function for the node decreasing its key from 18 to 5.

So the amortized costs are O(N*logN) for the Insert
function, O(N*logN) for the Extract-Min function and
O(MlogN) for the Decrease-Key function. Finally, because
in Section 5.2 we will show that by modifying the
LSA database data structure the Lookup function is no
more needed, the total cost of the new implementation of
the Dijkstra’s algorithm in modified Quagga becomes as
expected O((M+N)logN). In particular when M=O(N) the
amortized cost reduces to O(N*logN).

 4.3 New solution for lookup operation
Instead of finding a way to implement the Lookup function,
with an O(logN) cost, we have modified the LSA database
data structure so that the Lookup function becomes no
longer needed. In particular for each LSA, stored
in the database, we have added information denoting
whether the LSA is in the Candidate List. In the positive
case, the information also denotes the position in the
Candidate List where the vertex associated to the LSA is
stored. That allows a vertex associated to an LSA to be
immediately accessed during the execution of the Dijkstra’s
algorithm. Further, because the sift-up and the shift-down

operations may change the position of a vertex in the
Candidate List, a pointer to the information of the
associated LSA is added to each vertex, so the LSA can be
updated simultaneously.

4.4 Numerical Results for Modified Quagga Routing
Software
The measured values of the switching time on the modified
Quagga version is presented in Fig. 10 varying the number
N of vertexes in the graph. They are compared with the
same measure taken on the Cisco and on the original
Quagga version.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 1151
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Fig. 10. Performance comparison among Cisco, Quagga , modified
Quagga (Fp=500 pps and Lp=100 bytes)

From the results shown in Fig. 10 we notice that switching
time on the modified Quagga version is always less than
the time needed on the original version, proving the success
of our optimization process.

EXPERIMENT SETUP
We have used a system having Ubuntu 14.04 operating
system with minimum 2 GB RAM, 350 GB Hard disk, 3.10
GHz processor. To create Test-Bed (explained in fig.1) we
used VMware Workstation. Create 3 Virtual Machine
having Ubuntu 14.04 on VMware Workstation. One virtual
machine work as PC-A using RUDE traffic generator for
generating packet. Another virtual machine work as PC-B
using BRITE software for network topology. And third
virtual machine work as DUT. Install quagga on DUT. First
check performance using the source code available on
quagga the experiment result is showing in fig. 5.

5. CONCLUSIONS
This experiment is setup to evaluate the OSPF performance
of software router. In particular I have reported the
performance indexes to characterize an OSPF router. So I
have directed my attention to two performance indexes:
SPF computation time, which represents the time for a
router to compute Dijkstra algorithm, and Switching time.
So to have a performance comparison between Software
Routers and a commercial router I have realized a test-bed
to evaluate these indexes on both devices. After a results
analysis I have concluded that the Software Routers
(quagga), have performance worse than a Cisco device.
After our changes to Quagga code, improved performance.
The results obtained for switching time with our modified
version of Quagga are better than the ones obtained with a
high-end commercial router. In this way I have proved that
a Software Router is a realistic competitor for a commercial
device.

REFERENCES
 [1] Raffaele Bolla, Roberto Bruschi ”PC-based Software Routers: High

Performance and Application Service Support” of the ACM workshop on
Programmable routers ,2008, University of Genoa, Italy

[2] J Moy, “OSPF Version 2” , Request for Comments 2328, April 1998
[3] Afek Y., Bremler-Barr A., Har -Peled S., “Routing with a clue,” IEEE Trans.

On Networking, Vol.9, n.6, 2001, pp.693 -705
[4] A Shaikh and A Greenberg, “Experience in Black-box OSPF

Measurements,” in Proc ACM SIGCOMM Internet Measurement
Workshop (IMW) 2001, pp. 113-125, November 2001

[5] V. Eramo, M. Listanti and A. Cianfrani, “ Switching Time Measurement and
Optimisation Issues in GNU Quagga Routing Software,” IEEE Globecom
2005, St. Louis (USA), December 2005

[6] S.Bhosale ,R. Joshi “Conformance testing of OSPF protocol,” IEEE , Beijing,
Jan. 2008

[7] S. Saunders, “A Comparison of Data Structures for Dijkstra’s Single Source
Shortest Path Algorithm,”

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.6508.
[8] A. V. Goldberg and R. E. Tarjan, “ Expected performance of Dijkstra’s

Shortest Path algorithm,” Technical Report 96 -062, NEC Research
Institute, Princeton, NJ, June 1996

[9] www.cisco.com
[10] V. Manral, R. White, A. Shaikh. Benchmarking Basic OSPF Single Router

Control Plane Convergence, Request for Comments 4061, April 2005.
[11] V. Manral, R. White, A. Shaikh. Consideration When Using Basic OSPF

Convergence Benchmarks, Request for Comments 4063, April 2005.
[12] A. Medina, A. Lakhina, I. Matt a, and J. Byers, “BRITE: An Approach to

Universal Topology Generation,” in Proc. Ninth International
Symposium in Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS'01), IEEE Computer Society,
Cincinnati, August 15 -18 2001

[13] V. Eramo, M. Listanti, N. Caione, I. Russo, G. Gasparro, “Optimization in
the Shortest Path First Computation for the Software Routing GNU
Zebra,” IEICE Transactions Communications, vol. E88-B, no. 6, June 2005,
pp. 2644-2649.

[14] LSA Generator Software SPOOF,
http://www.cs.ucsb.edu/~rsg/Routing/download.html

[15] RUDE/CRUDE Traffic Generator, http://rude.sourceforge.net/
[16] Network Emulation Software Brite,

http://www.cs.bu.edu/brite/download.html
[17] GNU “Quagga.”. http://www.nongnu.org/quagga/
[18] The Open Source Initiative, www.opensource.org.
————————————————————————

• Ashish Kumar Mishra is currently pursuing master’s degree program in
Information technology in SRM University, Chennai , India, PH-
09710031071. E-mail: akmishra1881@gmail.com

• P.Selvaraj is currently an assistant professor of Information Technology
engineering in SRM University, Chennai, Indi. E-mail:
selvaraj.P@ktr.srmuniv.ac.in

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bhosale,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Joshi,%20R..QT.&newsearch=true
http://www.cisco.com/
http://www.cs.ucsb.edu/~rsg/Routing/download.html
http://rude.sourceforge.net/
http://www.cs.bu.edu/brite/download.html
http://www.opensource.org/

	1. Introduction
	a. Ospf Performance Indexes

	2. Test-Bed For The Evaluation Of The Switching Time
	a. A binary heap data structure to implement the Candidate List

	References

